skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bilotto, Franco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset presents spatiotemporal dynamics of phosphorus (P) fertilizer management (application rate, timing, and method) at a 4km × 4 km resolution in agricultural land of the contiguous U.S. from 1850 to 2022. By harmonizing multiple data sources, we reconstructed the county-level crop-specific P fertilizer use history. We then spatialized and resampled P fertilizer use data to 4 km × 4 km gridded maps based on historical U.S. cropland distribution and crop type database developed by Ye et al. (2024). This dataset contains (1) P fertilizer total consumption and mean application rate at the national level (Tabular); (2) P fertilizer consumption of 11 crops at the state level (Tabular); (3) P fertilizer consumption of permanent pasture (Tabular); (4) P fertilizer consumption of non-farm at the state level (Tabular); (5) P fertilizer application rate of 11 crop types at the state level (Tabular); (6) P fertilizer application rate of 11 crop types at the county level (Tabular); (7) P fertilizer application timing ratio at the state level (Tabular); (8) P fertilizer application method ratio at the state level (Tabular); (9) Gridded maps of P fertilizer application rate based on state-level data; (10) and (11) Gridded maps of P fertilizer application rate based on county-level data; (12)-(20) Gridded maps of P fertilizer application rate for each crop. A detailed description of the data development processes, key findings, and uncertainties can be found in Cao, P., Yi, B., Bilotto, F., Gonzalez Fischer, C., Herrero, M., Lu, C.: Crop-specific Management History of Phosphorus fertilizer input (CMH-P) in the croplands of United States: Reconciliation of top-down and bottom-up data sources, is under review for the journal Earth System Science Data (ESSD). https://essd.copernicus.org/preprints/essd-2024-67/#discussion.  This work is supported by the Iowa Nutrient Research Center, the ISU College of Liberal Arts and Sciences Dean's Faculty Fellowship, and NSF CAREER grant (1945036). 
    more » « less
  2. Abstract. Understanding and assessing the spatiotemporal patterns in crop-specific phosphorus (P) fertilizer management are crucial for enhancing crop yield and mitigating environmental problems. The existing P fertilizer dataset, derived from sales data, depicts an average application rate over total cropland at the county level but overlooks cross-crop variations. Conversely, the survey-based dataset offers crop-specific application details at the state level yet lacks inter-state variability. By reconciling these two datasets, we developed long-term gridded maps to characterize crop-specific P fertilizer application rates, timing, and methods across the contiguous US at a resolution of 4 km × 4 km from 1850 to 2022. We found that P fertilizer application rate over fertilized areas in the US increased from 0.9 g P m−2 yr−1 in 1940 to 1.9 g P m−2 yr−1 in 2022, with substantial variations among crops. However, approximately 40 % of cropland nationwide has remained unfertilized in the recent decade. The hotspots for P fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains over the past century, reflecting changes in cropland area, crop choices, and P fertilizer use across different crops. Pre-planting (fall and spring) and broadcast application are prevalent among corn, soybean, and cotton in the Midwest and the Southeast, indicating a high P loss risk in these regions. In contrast, wheat and barley in the Great Plains receive the most intensive P fertilization at planting and via non-broadcast application. The P fertilizer management dataset developed in this study can advance our comprehension of agricultural P budgets and facilitate the refinement of best P fertilizer management practices to optimize crop yield and to reduce P loss. Datasets are available at https://doi.org/10.5281/zenodo.10700821 (Cao et al., 2024). 
    more » « less